Exercise 2.1 Class 10 for Effortless Understanding

Question 1(part i, part ii, part iii, part iv), Question 2(part i, part ii, part iii, part iv ),Question 3, Question 4(part i, part ii, part iii ), Question 5, Question 6, Question 7, Question 8(part i, part ii), Question 9, Question 10.

Exercise 2.1 class 10 explores the concept of determining the discriminant of quadratic equations and using it to analyze the nature of the roots. By calculating the discriminant, you’ll learn how to classify the roots as real and distinct, real and equal, or complex. This concept is essential for understanding the behavior of quadratic equations and forms a key part of solving them efficiently.

Question 1 of Exercise 2.1 Class 10. find the discriminant of the following quadratic equations.

1(i) ๐Ÿฎ๐˜…ยฒ + ๐Ÿฏ๐˜… โˆ’ ๐Ÿญ = ๐Ÿฌ

For the given equation ๐Ÿฎ๐˜…ยฒ + ๐Ÿฏ๐˜… โˆ’ ๐Ÿญ = ๐Ÿฌ, the coefficients are:
๐˜ข = ๐Ÿฎ, ๐˜ฃ = ๐Ÿฏ, ๐˜ค = โˆ’๐Ÿญ

ฮ” = ๐˜ฃยฒ โˆ’ ๐Ÿฐ๐˜ข๐˜ค
ฮ” = ๐Ÿฏยฒ โˆ’ ๐Ÿฐ(๐Ÿฎ)(โˆ’๐Ÿญ)
ฮ” = ๐Ÿต + ๐Ÿด
ฮ” = ๐Ÿญ๐Ÿฝ


1(ii) ๐Ÿฒ๐˜นยฒ โˆ’ ๐Ÿด๐˜น + ๐Ÿฏ = ๐Ÿฌ
Given:
๐˜ข = ๐Ÿฒ, ๐˜ฃ = โˆ’๐Ÿด, ๐˜ค = ๐Ÿฏ
ฮ” = ๐˜ฃยฒ โˆ’ ๐Ÿฐ๐˜ข๐˜ค
ฮ” = (โˆ’๐Ÿด)ยฒ โˆ’ ๐Ÿฐ(๐Ÿฒ)(๐Ÿฏ)
ฮ” = ๐Ÿฒ๐Ÿฐ โˆ’ ๐Ÿณ๐Ÿฎ
ฮ” = โˆ’๐Ÿด


1(iii) ๐Ÿต๐˜นยฒ โˆ’ ๐Ÿฏ๐Ÿฌ๐˜น + ๐Ÿฎ๐Ÿฑ = ๐Ÿฌ
In the equation ๐Ÿต๐˜นยฒ โˆ’ ๐Ÿฏ๐Ÿฌ๐˜น + ๐Ÿฎ๐Ÿฑ = ๐Ÿฌ
๐˜ข = ๐Ÿต, ๐˜ฃ = โˆ’๐Ÿฏ๐Ÿฌ, ๐˜ค = ๐Ÿฎ๐Ÿฑ

ฮ” = ๐˜ฃยฒ โˆ’ ๐Ÿฐ๐˜ข๐˜ค
ฮ” = (โˆ’๐Ÿฏ๐Ÿฌ)ยฒ โˆ’ ๐Ÿฐ(๐Ÿต)(๐Ÿฎ๐Ÿฑ)
ฮ” = ๐Ÿต๐Ÿฌ๐Ÿฌ โˆ’ ๐Ÿต๐Ÿฌ๐Ÿฌ
ฮ” = ๐Ÿฌ


1(iv) ๐Ÿฐ๐˜นยฒ โˆ’ ๐Ÿณ๐˜น โˆ’ ๐Ÿฎ = ๐Ÿฌ
In the equation ๐Ÿฐ๐˜นยฒ โˆ’ ๐Ÿณ๐˜น โˆ’ ๐Ÿฎ = ๐Ÿฌ
๐˜ข = ๐Ÿฐ, ๐˜ฃ = โˆ’๐Ÿณ, ๐˜ค = โˆ’๐Ÿฎ

ฮ” = ๐˜ฃยฒ โˆ’ ๐Ÿฐ๐˜ข๐˜ค
ฮ” = (โˆ’๐Ÿณ)ยฒ โˆ’ ๐Ÿฐ(๐Ÿฐ)(โˆ’๐Ÿฎ)
ฮ” = ๐Ÿฐ๐Ÿต + ๐Ÿฏ๐Ÿฎ
ฮ” = ๐Ÿด๐Ÿญ


Exercise 2.1 class 10. Nature of roots of a Quadratic Equation through discriminant.

Question 2 of Exercise 2.1 Class 10.
Find the nature of the roots of the following given quadratic equations and verify the result by solving the equations.

2(i) ๐˜นยฒ โˆ’ ๐Ÿฎ๐Ÿฏ๐˜น + ๐Ÿญ๐Ÿฎ๐Ÿฌ = ๐Ÿฌ
For the quadratic equation ๐˜ข๐˜นยฒ + ๐˜ฃ๐˜น + ๐˜ค = ๐Ÿฌ, the discriminant ฮ” is given by:

๐˜ข = ๐Ÿญ, ๐˜ฃ = โˆ’๐Ÿฎ๐Ÿฏ, ๐˜ค = ๐Ÿญ๐Ÿฎ๐Ÿฌ

ฮ” = ๐˜ฃยฒ โˆ’ ๐Ÿฐ๐˜ข๐˜ค
ฮ” = (โˆ’๐Ÿฎ๐Ÿฏ)ยฒ โˆ’ ๐Ÿฐ(๐Ÿญ)(๐Ÿญ๐Ÿฎ๐Ÿฌ)
ฮ” = ๐Ÿฑ๐Ÿฎ๐Ÿต โˆ’ ๐Ÿฐ๐Ÿด๐Ÿฌ
ฮ” = ๐Ÿฐ๐Ÿต

Since ฮ” = ๐Ÿฐ๐Ÿต, which is positive and a perfect square,
the equation has two distinct real roots.

๐˜น = (โˆ’๐˜ฃ ยฑ โˆšฮ”) / ๐Ÿฎ๐˜ข
๐˜น = (โˆ’(โˆ’๐Ÿฎ๐Ÿฏ) ยฑ โˆš๐Ÿฐ๐Ÿต) / ๐Ÿฎ(๐Ÿญ)
๐˜น = (๐Ÿฎ๐Ÿฏ ยฑ ๐Ÿณ) / ๐Ÿฎ

๐˜น = (๐Ÿฎ๐Ÿฏ + ๐Ÿณ) / ๐Ÿฎ = ๐Ÿญ๐Ÿฑ
๐˜น = (๐Ÿฎ๐Ÿฏ โˆ’ ๐Ÿณ) / ๐Ÿฎ = ๐Ÿด

๐’๐จ, ๐ญ๐ก๐ž ๐ซ๐จ๐จ๐ญ๐ฌ ๐š๐ซ๐ž ๐ซ๐ž๐š๐ฅ, ๐ซ๐š๐ญ๐ข๐จ๐ง๐š๐ฅ ๐š๐ง๐ ๐ฎ๐ง๐ž๐ช๐ฎ๐š๐ฅ.


2(ii) ๐Ÿฎ๐˜นยฒ + ๐Ÿฏ๐˜น + ๐Ÿณ = ๐Ÿฌ

Here, a=2,
b=3, and
c=7.

= b2 4ac

= (3)2 4(2)(7)

= 9 56

= 47

Since =47, the equation has two complex conjugate roots.

x = b ± 2a

x = 3 ± 47 2(2)

x = 3 ± i 47 4

So, the roots are imaginary:

x = 3 ± i 47 4


2(iii) ๐Ÿญ๐Ÿฒ๐˜นยฒ โˆ’ ๐Ÿฎ๐Ÿฐ๐˜น + ๐Ÿต = ๐Ÿฌ

Here, a=16,
b=24, and
c=9.

= b2 4ac

= (24)2 4(16)(9)

= 576 576

= 0

Since =0, the equation has one real repeated root.

x = b ± 2a

x = (24) ± 0 2(16)

x = 24 32

x = 3 4

So, the roots are rational (real) and equal:

x = 3 4


2(iv) ๐Ÿฏ๐˜นยฒ + ๐Ÿณ๐˜น โˆ’ ๐Ÿญ๐Ÿฏ = ๐Ÿฌ

Given:
a=3 ,
b=7 ,
c=13

= b2 4ac

= (7)2 4(3)(13)

= 49 + 156

= 205

Since
=205 , which is positive but not a perfect square, the equation has two distinct real irrational roots.

x = b ± 2a

x = 7 ± 205 2(3)

x = 7 ± 205 6

x1 = 7 + 205 6

x2 = 7 205 6

Hence, the equation has two distinct real irrational roots.


Question 3 Exercise 2.1 Class 10.
๐…๐จ๐ซ ๐ฐ๐ก๐š๐ญ ๐ฏ๐š๐ฅ๐ฎ๐ž ๐จ๐Ÿ ๐ค, ๐ญ๐ก๐ž ๐ž๐ฑ๐ฉ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง ๐คยฒ + ๐Ÿ(๐ค + ๐Ÿ)๐ฑ + ๐ฑยฒ ๐ข๐ฌ ๐š ๐ฉ๐ž๐ซ๐Ÿ๐ž๐œ๐ญ ๐ฌ๐ช๐ฎ๐š๐ซ๐ž?

Solution:

Given:

k2 + 2 ( k + 1 ) x + x2

Comparing with:

a x2 + b x + c = 0

We calculate the discriminant:

b2 4 a c = [ 2 ( k + 1 ) 2 ] 4 ( k2 ) ( 1 )

= 4 ( k + 1 ) 2 4 k2

= 4 [ k2 + 2 k + 1 ] 4 k2

= 4 k2 + 8 k + 4 4 k2

As given that this expression is a perfect square, the discriminant should be zero:

b2 4 a c = 0

Dividing by:

4

3 k2 2 k 1 = 0

Simplifying:

3 k2 2 k 1 = 0

For what value of:

k

will make it zero?

( k 1 )( 3 k + 1 ) = 0

or:

k = 1
k = 1 3


Question 4 of Exercise 2.1 Class 10.
Find the value of k if the roots of the following equations are equal.

4(i) (๐Ÿ๐คโˆ’๐Ÿ)๐ฑยฒ + ๐Ÿ‘๐ค๐ฑ + ๐Ÿ‘ = ๐ŸŽ

Given equation:

(2k1) x2 + 3kx + 3 = 0

Coefficients:

a = (2k1) ,
b = 3k ,
c = 3

Discriminant:

= b2 4ac

= (3k)2 4 (2k1) (3)

= 9k2 12 (2k1)

= 9k2 24k + 12

Set the discriminant to zero:

9k2 24k + 12 = 0


4(ii) \(\boldsymbol{x^2 + 2(k+2)x +(3k+4)=0}\)

\begin{align*}
\text{Given equation:} & \quad x^2 + 2(k+2)x + (3k+4) = 0 \\
\text{Coefficients:} & \quad a = 1, \quad b = 2(k+2), \quad c = 3k+4 \\
\text{Discriminant:} & \quad \Delta = b^2 – 4ac \\
\Delta &= [2(k+2)]^2 – 4(3k+4) \\
&= 4(k+2)^2 – 4(3k+4) \\
&= 4(k^2 + 4k + 4) – 4(3k + 4) \\
&= 4k^2 + 16k + 16 – 12k – 16 \\
&= 4k^2 + 4k \\
\text{Set the discriminant to zero:} & \quad 4k^2 + 4k = 0 \\
\text{Factorize:} & \quad 4k(k + 1) = 0 \\
\text{Solve for } k: & \\
4k &= 0 \quad \Rightarrow \quad k = 0 \\
k + 1 &= 0 \quad \Rightarrow \quad k = -1 \\
\text{Values of } k: & \quad k = 0 \quad \text{or} \quad k = -1
\end{align*}


4(iii) \(\boldsymbol{(3k+2)x^2 – 5(k+1)x + (2k+3) = 0}\)

Find the value of \( k \) if the roots of the following equation are equal:

\[ (3k+2)x^2 – 5(k+1)x + (2k+3) = 0 \]

Given the equation \( (3k+2)x^2 – 5(k+1)x + (2k+3) = 0 \), we identify the coefficients as:
\[ a = 3k + 2, b = -5(k + 1), c = 2k + 3 \]

Now, we calculate the discriminant:

\[ \Delta = b^2 – 4ac \]

Substitute the values of \( a \), \( b \), and \( c \):

\begin{align*}
\Delta &= [-5(k + 1)]^2 – 4(3k + 2)(2k + 3) \\
&= 25(k + 1)^2 – 4(3k + 2)(2k + 3) \\
&= 25(k^2 + 2k + 1) – 4(6k^2 + 13k + 6) \\
&= 25k^2 + 50k + 25 – 24k^2 – 52k – 24 \\
&= k^2 – 2k + 1
\end{align*}

Set the discriminant to zero: \( k^2 – 2k + 1 = 0 \)

Factorize the quadratic equation:\( (k – 1)^2 = 0 \)

Solve for \( k \):

\[ k – 1 = 0 \quad \Rightarrow \quad k = 1 \]

Therefore, the value of \( k \) for which the roots of the equation are equal is:

\[ k = 1 \]

Question 5 of Exercise 2.1 Class 10.
Show that the equation \(\boldsymbol{x^2 + (mx+c)^2 =a^2}\) has equal roots if \(\boldsymbol{c^2 = a^2 (1 + m^2)}\).

\(\text{Expand } (mx + c)^2:\)
\begin{align*}
x^2 + m^2x^2 + 2mxc + c^2 &= a^2
\end{align*}

\(\text{Combine like terms:}\)
\begin{align*}
(1 + m^2)x^2 + 2mxc + c^2 &= a^2
\end{align*}

\(\text{Rearrange to standard quadratic form:}\)
\begin{align*}
(1 + m^2)x^2 + 2mxc + (c^2 – a^2) &= 0
\end{align*}

\(\text{For the roots to be equal, the discriminant must be zero:}\)
\begin{align*}
\Delta &= b^2 – 4ac
\end{align*}

\(\text{Here, } a = 1 + m^2, \, b = 2mc, \, \text{and } c = c^2 – a^2.\)

\(\text{Calculate the discriminant:}\)
\begin{align*}
\Delta &= (2mc)^2 – 4(1 + m^2)(c^2 – a^2) \\
&= 4m^2c^2 – 4(1 + m^2)(c^2 – a^2) \\
&= 4m^2c^2 – 4(c^2 + m^2c^2 – a^2 – m^2a^2) \\
&= 4m^2c^2 – 4c^2 – 4m^2c^2 + 4a^2 + 4m^2a^2 \\
&= -4c^2 + 4a^2 + 4m^2a^2 \\
&= 4(a^2 + m^2a^2 – c^2)
\end{align*}

\(\text{Set the discriminant to zero:}\)
\begin{align*}
4(a^2 + m^2a^2 – c^2) &= 0 \\
a^2 + m^2a^2 – c^2 &= 0 \\
c^2 &= a^2(1 + m^2)
\end{align*}

\(\text{Therefore, the equation } x^2 + (mx + c)^2 = a^2 \text{ has equal roots if } c^2 = a^2 (1 + m^2).\)


Question 6 of Exercise 2.1 Class 10.
Find the condition that the roots of the equation \(\boldsymbol{ (mx + c)^2 – 4ax = 0} \) are equal.

Given the equation:
\[ (mx + c)^2 – 4ax = 0 \]

Expand \( (mx + c)^2 \):
\begin{align*}
(m^2x^2 + 2mxc + c^2) – 4ax &= 0 \\
m^2x^2 + 2mxc + c^2 – 4ax &= 0
\end{align*}

Rearrange to standard quadratic form:
\[ m^2x^2 + (2mc – 4a)x + c^2 = 0 \]

For the roots to be equal, the discriminant must be zero:
\[ \Delta = b^2 – 4ac \]

Here, \( a = m^2 \), \( b = 2mc – 4a \), and \( c = c^2 \).

Calculate the discriminant:
\begin{align*}
\Delta &= (2mc – 4a)^2 – 4(m^2)(c^2) \\
&= (2mc – 4a)^2 – 4m^2c^2 \\
&= 4m^2c^2 – 16mac + 16a^2 – 4m^2c^2 \\
&= 16a^2 – 16mac
\end{align*}

Set the discriminant to zero:
\[ 16a^2 – 16mac = 0 \]
\[ 16a(a – mc) = 0 \]

Therefore, the condition for the roots to be equal is:
\[ a = mc \]


Question 7 of Exercise 2.1 Class 10. if the roots of the equation \(\boldsymbol{(c^2 -ab)x^2 -2(a^2 -bc)x + (b^2 – ac)=0}\) are equal then a=0 or \(\boldsymbol {a^3 +b^3 +c^3 =3abc}\).

Given the equation:
\[ (c^2 – ab)x^2 – 2(a^2 – bc)x + (b^2 – ac) = 0 \]

For the roots to be equal, the discriminant must be zero:
\[ \Delta = b^2 – 4ac \]

Here, \( a = c^2 – ab \), \( b = -2(a^2 – bc) \), and \( c = b^2 – ac \).

Calculate the discriminant:
\begin{align*}
\Delta &= [-2(a^2 – bc)]^2 – 4(c^2 – ab)(b^2 – ac) \\
&= 4(a^2 – bc)^2 – 4(c^2 – ab)(b^2 – ac) \\
&= 4(a^4 – 2a^2bc + b^2c^2) – 4(c^2b^2 – ac^3 – ab^3 + a^2bc) \\
&= 4a^4 – 8a^2bc + 4b^2c^2 – 4c^2b^2 + 4ac^3 + 4ab^3 – 4a^2bc \\
&= 4a^4 – 12a^2bc + 4ac^3 + 4ab^3
\end{align*}

Set the discriminant to zero:
\begin{align}
4a^4 – 12a^2bc + 4ac^3 + 4ab^3 &= 0 \\
a^4 – 3a^2bc + ac^3 + ab^3 &= 0 \\
a(a^3 – 3abc + c^3 + b^3) &= 0
\end{align}

Therefore, the condition for the roots to be equal is:
\[ a = 0 \quad \text{or} \quad a^3 + b^3 + c^3 = 3abc \]


Question 8 of Exercise 2.1 Class 10. Show that the roots of the following equations are rational.

8(i) \(\boldsymbol{a(b-c)x^2 +b(c-a)x +c(a-b)=0}\)

Given the equation:
\[ a(b-c)x^2 + b(c-a)x + c(a-b) = 0 \]

For the roots to be rational, the discriminant must be a perfect square. The discriminant \(\Delta\) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
\[ \Delta = b^2 – 4ac \]

Here, \( A = a(b-c) \), \( B = b(c-a) \), and \( C = c(a-b) \).

Calculate the discriminant:
\begin{align*}
\Delta &= [b(c-a)]^2 – 4[a(b-c)][c(a-b)] \\
&= b^2(c-a)^2 – 4a(b-c)c(a-b) \\
&= b^2(c^2 – 2ac + a^2) – 4ac(b^2 – ab – bc + ac) \\
&= b^2c^2 – 2ab^2c + b^2a^2 – 4acb^2 + 4a^2bc + 4a^2c^2 \\
&= b^2c^2 – 2ab^2c + b^2a^2 – 4acb^2 + 4a^2bc + 4a^2c^2 \\
&= (b^2c^2 + b^2a^2 – 2ab^2c) + (4a^2c^2 + 4a^2bc – 4acb^2) \\
&= b^2(c^2 + a^2 – 2ac) + 4a^2(c^2 + bc – bc) \\
&= b^2(c – a)^2 + 4a^2c^2
\end{align*}

Since \( \Delta \) is a sum of squares, it is always non-negative. For the roots to be rational, \( \Delta \) must be a perfect square. Given that \( b^2(c – a)^2 \) and \( 4a^2c^2 \) are both perfect squares, their sum is also a perfect square.

Therefore, the roots of the equation \( a(b-c)x^2 + b(c-a)x + c(a-b) = 0 \) are rational.


8(ii) \(\boldsymbol{(a+2b)x^2 + 2(a+b+c)x + (a+2c) = 0} \)

Given the equation:
\[ (a+2b)x^2 + 2(a+b+c)x + (a+2c) = 0 \]

For the roots to be rational, the discriminant must be a perfect square. The discriminant \(\Delta\) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
\[ \Delta = b^2 – 4ac \]

Here, \( a = a+2b \), \( b = 2(a+b+c) \), and \( c = a+2c \).

Calculate the discriminant:
\begin{align*}
\Delta &= [2(a+b+c)]^2 – 4(a+2b)(a+2c) \\
&= 4(a+b+c)^2 – 4(a+2b)(a+2c) \\
&= 4(a^2 + 2ab + 2ac + b^2 + 2bc + c^2) – 4(a^2 + 2ac + 2ab + 4bc) \\
&= 4a^2 + 8ab + 8ac + 4b^2 + 8bc + 4c^2 – 4a^2 – 8ac – 8ab – 16bc \\
&= 4b^2 + 4c^2 – 8bc \\
&= 4(b^2 – 2bc + c^2) \\
&= 4(b – c)^2
\end{align*}

Since \(\Delta = 4(b – c)^2\) is a perfect square, the roots of the equation are rational.


Question 9 of Exercise 2.1 Class 10. for all values of k prove that root of the equation \(\boldsymbol{x^2 – 2(k+(1/k))x+3=0, k \neq 0}\) are real.

Given the equation:
\[ x^2 – 2\left(k + \frac{1}{k}\right)x + 3 = 0 \]

For the roots to be real, the discriminant must be non-negative. The discriminant \(\Delta\) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
\[ \Delta = b^2 – 4ac \]

Here, \( a = 1 \), \( b = -2\left(k + \frac{1}{k}\right) \), and \( c = 3 \).

Calculate the discriminant:
\begin{align*}
\Delta &= \left[-2\left(k + \frac{1}{k}\right)\right]^2 – 4(1)(3) \\
&= 4\left(k + \frac{1}{k}\right)^2 – 12 \\
&= 4\left(k^2 + 2 \cdot k \cdot \frac{1}{k} + \frac{1}{k^2}\right) – 12 \\
&= 4\left(k^2 + 2 + \frac{1}{k^2}\right) – 12 \\
&= 4k^2 + 8 + \frac{4}{k^2} – 12 \\
&= 4k^2 + \frac{4}{k^2} – 4 \\
&= 4\left(k^2 + \frac{1}{k^2} – 1\right)
\end{align*}

Since \( k \neq 0 \), \( k^2 + \frac{1}{k^2} \geq 2 \) by the AM-GM inequality. Therefore:
\begin{align*}
k^2 + \frac{1}{k^2} – 1 &\geq 2 – 1 \\
&= 1
\end{align*}

Thus, the discriminant \(\Delta\) is:
\begin{align*}
\Delta &= 4\left(k^2 + \frac{1}{k^2} – 1\right) \\
&\geq 4 \cdot 1 \\
&= 4
\end{align*}

Since \(\Delta \geq 4\), the discriminant is always non-negative for all \( k \neq 0 \). Therefore, the roots of the equation \( x^2 – 2\left(k + \frac{1}{k}\right)x + 3 = 0 \) are real for all values of \( k \neq 0 \).


Question 10 of Exercise 2.1 Class 10. Show that the roots of the equation \(\boldsymbol{ (b-c)x^2 + (c-a)x + (a-b) = 0} \) are real.

Given the equation:
\[ (b-c)x^2 + (c-a)x + (a-b) = 0 \]

For the roots to be real, the discriminant must be non-negative. The discriminant \(\Delta\) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
\[ \Delta = b^2 – 4ac \]

Here, \( a = b-c \), \( b = c-a \), and \( c = a-b \).

Calculate the discriminant:
\begin{align*}
\Delta &= (c-a)^2 – 4(b-c)(a-b) \\
&= (c-a)^2 – 4[(b-c)(a-b)] \\
&= (c-a)^2 – 4[ba – b^2 – ca + bc] \\
&= (c-a)^2 – 4[ba – b^2 – ca + bc] \\
&= c^2 – 2ac + a^2 – 4ab + 4b^2 + 4ac – 4bc \\
&= a^2 + b^2 + c^2 – 2ab – 2bc + 2ac \\
&= (a – b)^2 + (b – c)^2 + (c – a)^2
\end{align*}

Since \(\Delta = (a – b)^2 + (b – c)^2 + (c – a)^2\) is a sum of squares, it is always non-negative.

Therefore, the roots of the equation \( (b-c)x^2 + (c-a)x + (a-b) = 0 \) are real.


Exercise 2.2 solutions will take you further in in this unit.

Here is Video lecture of exercise 2.1 Class 10.

Explore a detailed guide on the discriminant of quadratic equations with Cuemath, where youโ€™ll learn how to calculate and interpret it to classify roots effectively.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *