

بسم الله الرحمن الرحيم

Solutions of UNIT #18

Review Exercise

Class 10 Math Sindh Board

NotesOfMath.com

*Solved Exercises, Past Papers
MCQ Tests, Imprtant Formulas*

www.notesofmath.com

Review Exercise 18 - Complete Solutions

1. Multiple Choice Questions (MCQs)

1. (i) In a proportion $p : q :: r : s$, p is called

(a) third proportional (b) mean (c) fourth proportional (d) first proportional (e) none of these

1. (ii) In a ratio $u : v$, v is called

(a) consequent (b) antecedent (c) relation (d) none of these

1. (iii) In a ratio $u : v$, u is called

(a) antecedent (b) consequent (c) relation (d) none of these

1. (iv) If $a : b :: b : c$ are in continued proportion then b is called _____

proportion between a & c .

(a) 1^{st} (b) mean (c) 3^{rd} (d) None of these

1. (v) The mean proportional between a^2 and b^2 is

(a) \sqrt{ab} (b) ab (c) ab (d) $-ab$

1. (vi) If $x + 5 : x + 7 :: 5 : 7$ then x is equal to

(a) 2 (b) -1 (c) 0 (d) 1

1. (vii) If $1, 9, x$ and 45 are in proportion, then $x =$

(a) 27 (b) 5 (c) 405 (d) $\frac{1}{5}$

1. (viii) If $p : q :: r : s$ then $p + r : q + s$ this property is called

(a) componendo (b) invertendo (c) dividendo (d) alternando

1. (ix) If $x : y :: z : w$ then according to componendo

$$(a) \frac{x}{x-y} = \frac{z}{z-w} \quad (b) \frac{x}{x+y} = \frac{z}{z+w} \quad (c) \frac{x+y}{y} = \frac{z+w}{w} \quad (d) \frac{x-y}{y} = \frac{z-w}{w}$$

1. (x) If $a : b :: c : d$ then according to alternando property

$$(a) \frac{a-c}{b-d} \quad (b) \frac{a+b}{c+d} \quad (c) \frac{b}{a} = \frac{d}{c} \quad (d) \frac{a}{c} = \frac{b}{d}$$

1. (xi) The fourth proportional to 3, 5, 12 is

(a) 20 (b) 15 (c) 60 (d) 36

1. (xii) If $2x, 3y$ and $6z$ are in continued proportion then

$$(a) y^2 = 12xz \quad (b) 9y^2 = xz \quad (c) 9y^2 = 12xz \quad (d) 3y^2 = 4xz$$

1. (xiii) If $\frac{x}{y} = \frac{w}{z}$ then according to dividendo property is

$$(a) \frac{x-y}{y} = \frac{w-z}{z} \quad (b) \frac{x-y}{y} = \frac{w+z}{z} \quad (c) \frac{x+y}{y} = \frac{w+z}{z} \quad (d) \text{None of these}$$

1. (xiv) Force and acceleration are in

(a) direct proportion (b) joint proportion (c) inverse proportion (d) None of these

1. (xv) If $a : 4 :: 15 : 5$ then $a =$

(a) 20 (b) 15 (c) 12 (d) 10

2. Find the ratios of the following

(i) 100 m and 500 cm

Convert 100 m to cm: $100 \times 100 \text{ cm} = 10000 \text{ cm}$.

$$\text{Ratio} = \frac{10000}{500} = \frac{20}{1}$$

$$\text{Ratio} = 20 : 1$$

(ii) 50 kg and 300 g

Convert 50 kg to g: $50 \times 1000 \text{ g} = 50000 \text{ g}$.

$$\text{Ratio} = \frac{50000}{300} = \frac{500}{3}$$

$$\text{Ratio} = 500 : 3$$

3. Find the value of x in the following

(i) $5x - 3 : x + 11 :: 3 : 4$

$$\frac{5x - 3}{x + 11} = \frac{3}{4}$$

$$4(5x - 3) = 3(x + 11)$$

$$20x - 12 = 3x + 33$$

$$17x = 45$$

$$x = \frac{45}{17}$$

(ii) $9 : x - 10 :: x + 13 : 12$

$$\frac{9}{x - 10} = \frac{x + 13}{12}$$

$$108 = (x - 10)(x + 13)$$

$$108 = x^2 + 3x - 130$$

$$x^2 + 3x - 238 = 0$$

$$(x + 17)(x - 14) = 0$$

$$x = 14 \quad \text{or} \quad x = -17$$

4. If y varies directly as x and $y = 25$ when $x = 5$ then find y when $x = 44$.

1. Variation: $y = kx$
2. Find k : $25 = k(5) \Rightarrow k = 5$
3. Find y : $y = 5(44)$

$$y = 220$$

5. If y varies inversely as x and $y = 100$ when $x = \frac{1}{2}$ then find y when $x = 4$.

1. Variation: $y = \frac{k}{x}$
2. Find k : $100 = \frac{k}{1/2} \Rightarrow k = 50$
3. Find y : $y = \frac{50}{4}$

$$y = 12.5 \quad \text{or} \quad \frac{25}{2}$$

6. If $x : y :: z : w$ then prove that $\frac{7x-5y}{7x+5y} = \frac{7z-5w}{7z+5w}$.

Given $\frac{x}{y} = \frac{z}{w}$. Multiply both sides by $\frac{7}{5}$:

$$\frac{7x}{5y} = \frac{7z}{5w}$$

Applying the **Componendo and Dividendo** theorem:

$$\frac{7x - 5y}{7x + 5y} = \frac{7z - 5w}{7z + 5w}$$

Proven.

7. Solve $\frac{(x-3)(x-5)}{(x-7)(x-2)} = \frac{(x-6)(x-2)}{(x-1)(x-8)}$ by **componendo – dividendo theorem**.

First, apply the **Alternando** property to rearrange the terms:

$$\frac{(x-3)(x-5)}{(x-6)(x-2)} = \frac{(x-7)(x-2)}{(x-1)(x-8)}$$

Expand the factors:

$$\frac{x^2 - 8x + 15}{x^2 - 8x + 12} = \frac{x^2 - 9x + 14}{x^2 - 9x + 8}$$

Let $A = x^2 - 8x$ and $B = x^2 - 9x$.

$$\frac{A + 15}{A + 12} = \frac{B + 14}{B + 8}$$

Apply **Dividendo** ($\frac{M}{N} \Rightarrow \frac{M-N}{N}$) to both sides:

$$\frac{(A + 15) - (A + 12)}{A + 12} = \frac{(B + 14) - (B + 8)}{B + 8}$$

$$\frac{3}{A + 12} = \frac{6}{B + 8}$$

Simplify: $B + 8 = 2(A + 12)$

$$x^2 - 9x + 8 = 2(x^2 - 8x + 12)$$

$$x^2 - 9x + 8 = 2x^2 - 16x + 24$$

$$0 = x^2 - 7x + 16$$

The discriminant is $D = (-7)^2 - 4(1)(16) = 49 - 64 = -15$. Since the discriminant is negative, there are **no real solutions**.

No real solution.

8. If x varies directly as y and inversely as z . If $x = 30$ when $y = 15$ and $z = 2$. Find x if $y = 20$ when $z = 12$.

1. **Variation:** $x = k \frac{y}{z}$
2. **Find k :** $30 = k \frac{15}{2} \Rightarrow 60 = 15k \Rightarrow k = 4$
3. **Find x :** $x = 4 \frac{20}{12} = \frac{80}{12}$

$$x = \frac{20}{3}$$

9. The current in a circuit varies inversely with its resistance measured in ohms. When the current in a circuit is 40 ampere, the resistance is 10 ohms. Find the current if the resistance is 100 ohms.

1. **Variation:** $I = \frac{k}{R}$ (This is an application of **Ohm's Law**.)
2. **Find k :** $40 = \frac{k}{10} \Rightarrow k = 400$
3. **Find I :** $I = \frac{400}{100}$

$$I = 4 \text{ amperes}$$