

بسم الله الرحمن الرحيم

Solutions of
UNIT #18
Exercise 18.1

Class 10 Math Sindh Board

NotesOfMath.com

*Solved Exercises, Past Papers
MCQ Tests, Important Formulas*

www.notesofmath.com

1. Finding the Ratio of the Following

The key to finding a ratio is ensuring both quantities are in the **same unit** before simplifying.

(i) 70kg and 28kg

$$\text{Ratio} = \frac{70 \text{ kg}}{28 \text{ kg}} = \frac{70}{28}$$

Divide both by their greatest common divisor, which is 14:

$$\frac{70 \div 14}{28 \div 14} = \frac{5}{2}$$

Ratio: 5 : 2

(ii) 60cm and 1m

First, convert 1m to cm. Since 1m = 100cm:

$$\text{Ratio} = \frac{60 \text{ cm}}{100 \text{ cm}} = \frac{60}{100}$$

Divide both by 20:

$$\frac{60 \div 20}{100 \div 20} = \frac{3}{5}$$

Ratio: 3 : 5

(iii) 40sec, 3min

First, convert 3min to seconds. Since 1min = 60sec:

$$3 \text{ min} = 3 \times 60 \text{ sec} = 180 \text{ sec}$$

$$\text{Ratio} = \frac{40 \text{ sec}}{180 \text{ sec}} = \frac{40}{180}$$

Divide both by 20:

$$\frac{40 \div 20}{180 \div 20} = \frac{2}{9}$$

Ratio: 2 : 9

(iv) 200ml and 2l

First, convert 2l to ml. Since 1l = 1000ml:

$$2l = 2 \times 1000 \text{ ml} = 2000 \text{ ml}$$

$$\text{Ratio} = \frac{200 \text{ ml}}{2000 \text{ ml}} = \frac{200}{2000}$$

Divide both by 200:

$$\frac{200 \div 200}{2000 \div 200} = \frac{1}{10}$$

Ratio: 1 : 10

(v) 135° and 360°

$$\text{Ratio} = \frac{135^\circ}{360^\circ} = \frac{135}{360}$$

Divide both by their greatest common divisor, which is 45:

$$\frac{135 \div 45}{360 \div 45} = \frac{3}{8}$$

Ratio: 3 : 8

(vi) 3.5kg, 5kg 200gm

First, convert both quantities to grams (gm). Since 1kg = 1000gm:

- $3.5 \text{ kg} = 3.5 \times 1000 \text{ gm} = 3500 \text{ gm}$
- $5 \text{ kg } 200 \text{ gm} = 5 \times 1000 + 200 \text{ gm} = 5000 + 200 \text{ gm} = 5200 \text{ gm}$

$$\text{Ratio} = \frac{3500 \text{ gm}}{5200 \text{ gm}} = \frac{3500}{5200} = \frac{35}{52}$$

(The fraction $\frac{35}{52}$ cannot be simplified further as 35 is 5×7 and 52 is $2 \times 2 \times 13$). **Ratio:** 35 : 52

2. Factory Workers Ratios

Given Data:

- Total workers = 120
- Number of women = 45
- Number of men = Total workers – Number of women

$$120 - 45 = 75 \text{ men}$$

(i) men to women

$$\text{Ratio} = \text{Men} : \text{Women} = 75 : 45$$

Divide both by their greatest common divisor, 15:

$$75 \div 15 : 45 \div 15 = 5 : 3$$

Ratio: 5 : 3

(ii) women to men

$$\text{Ratio} = \text{Women} : \text{Men} = 45 : 75$$

Divide both by 15:

$$45 \div 15 : 75 \div 15 = 3 : 5$$

Ratio: 3 : 5

(iii) women to total worker

$$\text{Ratio} = \text{Women} : \text{Total Workers} = 45 : 120$$

Divide both by 15:

$$45 \div 15 : 120 \div 15 = 3 : 8$$

Ratio: 3 : 8

(iv) men to total workers

Ratio = Men : Total Workers = 75 : 120

Divide both by 15:

$$75 \div 15 : 120 \div 15 = 5 : 8$$

Ratio: 5 : 8

3. **Algebraic Ratio**

Problem: If $5(4x - 2y) = 3x - 4y$, find $x : y$.

Step 1: Simplify the equation.

$$20x - 10y = 3x - 4y$$

Step 2: Collect x terms on one side and y terms on the other. Subtract $3x$ from both sides and add $10y$ to both sides:

$$20x - 3x = 10y - 4y$$

$$17x = 6y$$

Step 3: Express the relationship as a ratio $\frac{x}{y}$. Divide both sides by y and then by 17:

$$\frac{x}{y} = \frac{6}{17}$$

Ratio $x : y$ is 6 : 17

4. **Equal Ratios (Proportion)**

Problem: Find the value of ' a ' if the ratios $3a + 4 : 2a + 5$ and $4 : 3$ are equal.

Since the ratios are equal, we can set up a proportion:

$$\frac{3a+4}{2a+5} = \frac{4}{3}$$

Step 1: Cross-multiply.

$$3(3a+4) = 4(2a+5)$$

Step 2: Distribute on both sides.

$$9a+12 = 8a+20$$

Step 3: Solve for a . Subtract $8a$ from both sides:

$$9a - 8a + 12 = 20$$

$$a + 12 = 20$$

Subtract 12 from both sides:

$$a = 20 - 12$$

$$a = 8$$

The value of a is 8.

5. Adding to a Ratio

Problem: What number must be added to antecedent and consequent of the ratio $5 : 27$ to make it equal to $1 : 3$?

Let the number to be added be x .

- Antecedent: 5
- Consequent: 27 The new ratio is $\frac{5+x}{27+x}$, which must equal $\frac{1}{3}$.

$$\frac{5+x}{27+x} = \frac{1}{3}$$

Step 1: Cross-multiply.

$$3(5 + x) = 1(27 + x)$$

$$15 + 3x = 27 + x$$

Step 2: Solve for x . Subtract x from both sides:

$$15 + 3x - x = 27$$

$$15 + 2x = 27$$

Subtract 15 from both sides:

$$2x = 27 - 15$$

$$2x = 12$$

Divide by 2:

$$x = 6$$

The number that must be added is 6.

6. Substitution into a Ratio

Problem: If $a : b = 5 : 8$, find the value of $3a + 4b : 5a + 7b$.

Since $a : b = 5 : 8$, we can write $a = 5k$ and $b = 8k$ for some constant $k \neq 0$. Alternatively, we can divide the expression by b :

$$\text{Required Ratio} = \frac{3a + 4b}{5a + 7b}$$

Divide the numerator and denominator by b :

$$\frac{\frac{3a}{b} + \frac{4b}{b}}{\frac{5a}{b} + \frac{7b}{b}} = \frac{3(\frac{a}{b}) + 4}{5(\frac{a}{b}) + 7}$$

Substitute the given value $\frac{a}{b} = \frac{5}{8}$:

$$\frac{3(\frac{5}{8}) + 4}{5(\frac{5}{8}) + 7} = \frac{\frac{15}{8} + 4}{\frac{25}{8} + 7}$$

Find a common denominator (8) for the numerator and the denominator separately:

$$\frac{\frac{15}{8} + \frac{4 \times 8}{8}}{\frac{25}{8} + \frac{7 \times 8}{8}} = \frac{\frac{15+32}{8}}{\frac{25+56}{8}}$$

$$\frac{\frac{47}{8}}{\frac{81}{8}}$$

Since $\frac{81}{8}$ is in the denominator, you multiply by its reciprocal $\frac{8}{81}$:

$$\frac{47}{8} \times \frac{8}{81} = \frac{47}{81}$$

The value of the ratio $3a + 4b : 5a + 7b$ is $47 : 81$.

7. Finding the Value of x

These problems involve **proportion**, where the product of the **extremes** (first and fourth terms) equals the product of the **means** (second and third terms). If $A : B :: C : D$, then $A \times D = B \times C$.

(i) $2x + 5 : 5 :: 3x - 2 : 7$

$$\text{Extremes} = (2x + 5) \times 7$$

$$\text{Means} = 5 \times (3x - 2)$$

$$(2x + 5) \times 7 = 5 \times (3x - 2)$$

$$14x + 35 = 15x - 10$$

Subtract $14x$ from both sides:

$$35 = 15x - 14x - 10$$

$$35 = x - 10$$

Add 10 to both sides:

$$x = 35 + 10$$

$$x = 45$$

(ii) $\frac{4x-3}{5} : \frac{3}{4} :: \frac{4x}{3} : \frac{7}{2}$

$$\text{Extremes} = \left(\frac{4x-3}{5}\right) \times \left(\frac{7}{2}\right)$$

$$\text{Means} = \left(\frac{3}{4}\right) \times \left(\frac{4x}{3}\right)$$

$$\left(\frac{4x-3}{5}\right) \times \left(\frac{7}{2}\right) = \left(\frac{3}{4}\right) \times \left(\frac{4x}{3}\right)$$

Simplify the Means side:

$$\frac{3}{4} \times \frac{4x}{3} = x$$

Simplify the Extremes side:

$$\frac{7(4x-3)}{10} = x$$

$$7(4x-3) = 10x$$

$$28x - 21 = 10x$$

Subtract $10x$ from both sides:

$$28x - 10x - 21 = 0$$

$$18x - 21 = 0$$

$$18x = 21$$

$$x = \frac{21}{18}$$

$$x = \frac{7}{6}$$

$$(iii) \frac{x-3}{2} : \frac{5}{x-1} :: \frac{x-1}{3} : \frac{4}{x+4}$$

$$\text{Extremes} = \left(\frac{x-3}{2}\right) \times \left(\frac{4}{x+4}\right)$$

$$\text{Means} = \left(\frac{5}{x-1}\right) \times \left(\frac{x-1}{3}\right)$$

Equate Extremes and Means:

$$\left(\frac{x-3}{2}\right) \times \left(\frac{4}{x+4}\right) = \left(\frac{5}{x-1}\right) \times \left(\frac{x-1}{3}\right)$$

Simplify both sides:

$$\frac{4(x-3)}{2(x+4)} = \frac{5(x-1)}{3(x-1)}$$

Assuming $x \neq 1$, we can cancel $(x-1)$ on the right side:

$$\frac{2(x-3)}{x+4} = \frac{5}{3}$$

Cross-multiply:

$$3 \times 2(x-3) = 5(x+4)$$

$$6(x-3) = 5(x+4)$$

$$6x - 18 = 5x + 20$$

Subtract $5x$ from both sides:

$$6x - 5x - 18 = 20$$

$$x - 18 = 20$$

Add 18 to both sides:

$$x = 20 + 18$$

$$x = 38$$

(iv) $(a^2 - ab + b^2) : x :: \frac{a^3 + b^3}{a-b} : (a+b)^2$

Recall the algebraic identity: $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$.

$$\text{Extremes} = (a^2 - ab + b^2) \times (a+b)^2$$

$$\text{Means} = x \times \left(\frac{a^3 + b^3}{a-b} \right)$$

Equate Extremes and Means:

$$(a^2 - ab + b^2)(a+b)^2 = x \left(\frac{a^3 + b^3}{a-b} \right)$$

Substitute the identity $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$:

$$(a^2 - ab + b^2)(a+b)^2 = x \left(\frac{(a+b)(a^2 - ab + b^2)}{a-b} \right)$$

Assuming $a^2 - ab + b^2 \neq 0$ and $a+b \neq 0$, divide both sides by $(a^2 - ab + b^2)$:

$$(a+b)^2 = x \left(\frac{a+b}{a-b} \right)$$

Divide both sides by $(a+b)$ (assuming $a+b \neq 0$):

$$a+b = x \left(\frac{1}{a-b} \right)$$

$$a+b = \frac{x}{a-b}$$

Solve for x :

$$x = (a+b)(a-b)$$

Recall the difference of squares identity: $(a+b)(a-b) = a^2 - b^2$.

$$x = a^2 - b^2$$

(v) $11-x : 8-x :: 25-x : 16-x$

$$\text{Extremes} = (11-x) \times (16-x)$$

$$\text{Means} = (8-x) \times (25-x)$$

Equate Extremes and Means:

$$(11-x)(16-x) = (8-x)(25-x)$$

Expand both sides:

$$11(16) - 11x - 16x + x^2 = 8(25) - 8x - 25x + x^2$$

$$176 - 27x + x^2 = 200 - 33x + x^2$$

Subtract x^2 from both sides:

$$176 - 27x = 200 - 33x$$

Add $33x$ to both sides:

$$176 - 27x + 33x = 200$$

$$176 + 6x = 200$$

Subtract 176 from both sides:

$$6x = 200 - 176$$

$$6x = 24$$

$$x = \frac{24}{6}$$

$$x = 4$$